An Adjoint Method for the Calculation of Remote Sensitivities in Supersonic Flow

نویسندگان

  • Siva K. Nadarajah
  • Antony Jameson
  • Juan Alonso
چکیده

This paper presents an adjoint method for the calculation of remote sensitivities in supersonic flow. The goal is to develop a set of discrete adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest. First, this paper presents the complete formulation and discretization of the discrete adjoint equations. The special treatment of the adjoint boundary condition to obtain remote sensitivities is also discussed. Secondly, we present results that demonstrate the application of the theory to a three-dimensional remote inverse design problem using a low sweep biconvex wing and a highly swept blunt leading edge wing. Lastly, we present results that establish the added benefit of using an objective function that contains the sum of the remote inverse and drag minimization cost functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aiaa 2002-5547 Sonic Boom Reduction Using an Adjoint Method for Wing-body Configurations in Supersonic Flow

This paper presents an adjoint method for the calculation of remote sensitivities in supersonic flow. The goal is to develop a set of adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest. First, this paper presents the formulation and discreti...

متن کامل

Adjoint-Based Sonic Boom Reduction for Wing-Body Configurations in Supersonic Flow

This paper presents an adjoint method for the calculation of remote sensitivities in supersonic flow. The goal is to develop a set of adjoint equations and their corresponding boundary conditions to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest, away from the surface of the aircraft. First, this paper present...

متن کامل

An Adjoint Method for the Calculation of Non-Collocated Sensitivities in Supersonic Flow

This paper presents an adjoint method for the calculation of non-collocated sensitivities in supersonic flow. The goal is to develop a set of discrete adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest. First, this paper presents the complet...

متن کامل

A Low Cost Numerical Simulation of a Supersonic Wind-tunnel Design

In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. ...

متن کامل

A posteriori pointwise error estimation for compressible fluid flows using adjoint parameters and Lagrange remainder Short title: A posteriori pointwise error estimation using adjoint parameters

The pointwise error of a finite-difference calculation of supersonic flow is discussed. The local truncation error is determined by a Taylor series with the remainder being in a Lagrange form. The contribution of the local truncation error to the total pointwise approximation error is estimated via adjoint parameters. It is demonstrated by numerical tests that the results of the numerical calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002